A046039 Numbers which cannot be represented as a sum of distinct 4th powers.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..60000
- Eric Weisstein's World of Mathematics, Biquadratic Number
Programs
-
Mathematica
max = 2000; f[x_] := Product[1 + x^(k^4), {k, 1, 10}]; A003999 = Exponent[#, x]& /@ List @@ Normal[Series[f[x], {x, 0, max}]] // Rest; A046039 = Complement[Range[max], A003999][[1 ;; 71]](* Jean-François Alcover, Nov 09 2012, after Charles R Greathouse IV *)
-
PARI
select( is_A046039(n,m=n)={m^4>n&& m=sqrtnint(n,4); n!=m^4&& !while(m>1, is_A046039(n-m^4, m--)||return)}, [1..74]) \\ M. F. Hasler, Apr 21 2020
Comments