A046040 Numbers that are the sum of 6 but no fewer positive cubes.
6, 13, 20, 34, 39, 41, 46, 48, 53, 58, 60, 69, 76, 79, 84, 86, 95, 98, 102, 104, 105, 110, 117, 121, 123, 124, 132, 139, 147, 151, 158, 165, 170, 173, 177, 184, 196, 202, 203, 210, 215, 221, 222, 228, 235, 236, 242, 247, 249, 263, 265, 268, 273, 275, 284, 287
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..3922
- Jan Bohman and Carl-Erik Froberg, Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
- K. S. McCurley, An effective seven-cube theorem, J. Number Theory, 19 (1984), 176-183.
- Eric Weisstein's World of Mathematics, Cubic Number.
- Eric Weisstein's World of Mathematics, Waring's Problem.
- Index entries for sequences related to sums of cubes
Programs
-
Mathematica
Select[Range[300], (pr = PowersRepresentations[#, 6, 3]; pr != {} && Count[pr, r_/; (Times @@ r) == 0] == 0)&] (* Jean-François Alcover, Jul 26 2011 *)
Extensions
Corrected by Arlin Anderson (starship1(AT)gmail.com).
Comments