A046069 Riesel Problem: Smallest m >= 0 such that (2n-1)2^m-1 is prime, or -1 if no such value exists.
2, 0, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, 1, 4, 1, 1, 2, 1, 1, 12, 3, 2, 4, 5, 1, 2, 7, 1, 2, 1, 3, 2, 5, 1, 4, 1, 3, 2, 1, 1, 10, 3, 2, 10, 9, 2, 8, 1, 1, 12, 1, 2, 2, 25, 1, 2, 3, 1, 2, 1, 1, 2, 5, 1, 4, 5, 3, 2, 1, 1, 2, 3, 2, 4, 1, 2, 2, 1, 1, 8, 3, 4, 2, 1, 3, 226, 3, 1, 2
Offset: 1
Keywords
References
- Ribenboim, P., The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
- Eric Weisstein's World of Mathematics, Riesel Number.
Crossrefs
Programs
-
Mathematica
max = 10^6; (* this maximum value of m is sufficient up to n=1000 *) a[1] = 2; a[2] = 0; a[n_] := For[m = 1, m <= max, m++, If[PrimeQ[(2*n - 1)*2^m - 1], Return[m]]] /. Null -> -1; Reap[ Do[ Print[ "a(", n, ") = ", a[n]]; Sow[a[n]], {n, 1, 100}]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)
Comments