cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046148 Number of n-digit numbers with maximal multiplicative persistence A014553.

Original entry on oeis.org

10, 1, 9, 12, 20, 2430, 5229, 7448, 282852, 88200, 8015040, 200676960, 2701775518, 24655323238, 15765750, 1715313600, 59049874884, 1112489914536, 14162129381400, 135917876094000, 1050596838951660, 6832549561749912, 38554260751029408, 193081920969057120
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    mper[n_] := Block[{k=0, m=n}, While[m>9, k++; m = Times @@ IntegerDigits@ m]; k]; mxper = {1, 4, 5, 6, 7, 7, 8, 9, 9, 10, 10, 10}; multi[w_] := Total[w]!/Times @@ (w!); a[1]=10; a[n_] := Sum[ Total[ If[ mxper[[n]] == 1 + mper[Times @@ (Range[9]^#)], multi[#], 0] & /@ Permutations[p]], {p, IntegerPartitions[n, {9}, Range[0, n]]}]; Array[a, 12] (* Giovanni Resta, Sep 01 2018 *)

Extensions

a(8)-a(12) from Donovan Johnson, Mar 30 2010
a(13)-a(24) from Giovanni Resta, Aug 31 2018

A046149 Smallest n-digit number with maximal multiplicative persistence A014553.

Original entry on oeis.org

0, 77, 679, 6788, 68889, 168889, 2677889, 26888999, 126888999, 3778888999, 13778888999, 113778888999, 1113778888999, 11113778888999, 277777788888899, 1277777788888899, 11277777788888899, 111277777788888899
Offset: 1

Views

Author

Keywords

Comments

Since there exists no number k <= 10^200 with multiplicative persistence 12, a(n) = (10^(n-15)-1)/9*10^15 + 277777788888899 for 15 <= n <= 200. - A.H.M. Smeets, Sep 18 2018

Crossrefs

Extensions

a(8)-a(18) from Donovan Johnson, Mar 30 2010
Showing 1-2 of 2 results.