A046298 Numbers k such that 2^k contains 2^12=4096 as its largest proper substring of the form 2^m.
104, 268, 346, 405, 455, 462, 504, 512, 658, 726, 820, 884, 923, 947, 974, 992, 994, 1012, 1122, 1123, 1132, 1198, 1251, 1278, 1280, 1329, 1356, 1361, 1379, 1411, 1433, 1435, 1446, 1453, 1479, 1498, 1502, 1512, 1543, 1544, 1552, 1572, 1585, 1628, 1665
Offset: 1
Examples
2^104 = 20282{4096}03651670423947251286016.
Crossrefs
Cf. A033921.
Programs
-
Mathematica
sub2[n_] := Block[{s = ToString[2^n], k = n-1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[1665], sub2[#] == 12 &] (* Giovanni Resta, Oct 14 2019 *)
Extensions
Definition reworded and offset changed to 1 by M. F. Hasler, Oct 11 2019