A046299 Numbers k such that 2^k contains 2^13=8192 as its largest proper substring of the form 2^m.
105, 269, 406, 463, 505, 513, 518, 536, 559, 570, 659, 821, 924, 948, 981, 993, 995, 1013, 1081, 1133, 1136, 1165, 1199, 1246, 1279, 1281, 1312, 1330, 1331, 1344, 1354, 1362, 1363, 1408, 1434, 1436, 1447, 1454, 1480, 1488, 1491, 1499, 1501, 1503, 1513
Offset: 1
Examples
2^105 = 40564{8192}07303340847894502572032.
Crossrefs
Cf. A033921.
Programs
-
Mathematica
sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[ s, ToString[2^k]], k--]; k]; Select[Range[1513], sub2[#] == 13 &] (* Giovanni Resta, Oct 14 2019 *)
Extensions
Definition and offset changed by M. F. Hasler, Oct 11 2019