cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046351 Palindromic composite numbers with only palindromic prime factors.

Original entry on oeis.org

4, 6, 8, 9, 22, 33, 44, 55, 66, 77, 88, 99, 121, 202, 242, 252, 262, 303, 343, 363, 393, 404, 484, 505, 525, 606, 616, 626, 686, 707, 808, 909, 939, 1111, 1331, 1441, 1661, 1991, 2112, 2222, 2662, 2772, 2882, 3333, 3443, 3773, 3883, 3993, 4224, 4444, 5445
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[4,5500],!PrimeQ[#]&&And@@palQ/@Join[{#},First/@FactorInteger[#]]&](* Jayanta Basu, Jun 05 2013 *)
  • Python
    from itertools import product
    from sympy import isprime, primefactors as pf
    def pal(n): s = str(n); return s == s[::-1]
    def palsthru(maxdigits):
      midrange = [[""], [str(i) for i in range(10)]]
      for digits in range(1, maxdigits+1):
        for p in product("0123456789", repeat=digits//2):
          left = "".join(p)
          if len(left) and left[0] == '0': continue
          for middle in midrange[digits%2]: yield int(left+middle+left[::-1])
    def okpal(p): return p > 3 and not isprime(p) and all(pal(f) for f in pf(p))
    print(list(filter(okpal, palsthru(4)))) # Michael S. Branicky, Apr 06 2021

Formula

(A032350 INTERSECT A033620) MINUS {1}. - R. J. Mathar, Sep 09 2015