cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046355 Composite numbers with only palindromic prime factors whose sum is palindromic (counted with multiplicity).

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 27, 28, 40, 45, 48, 54, 121, 308, 440, 495, 528, 594, 735, 784, 875, 882, 1050, 1120, 1250, 1260, 1331, 1344, 1500, 1512, 1600, 1701, 1800, 1920, 2025, 2048, 2101, 2121, 2160, 2304, 2430, 2525, 2592, 2751, 2916, 3030
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Subsequence of the numbers k in A046349 such that A262049(k) is in A002113. - R. J. Mathar, Sep 09 2015

Examples

			3030 = 2 * 3 * 5 * 101 -> 2 + 3 + 5 + 101 = 111 and 111 is a palindrome.
		

Crossrefs

Programs

  • Maple
    isA046355 := proc(n)
        local sofpp ;
        if isA046349(n) then
            sofpp := A262049(n) ;
            isA002113(sofpp) ;
        else
            false;
        end if;
    end proc:
    for n from 2 to 400 do
        if isA046355(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Sep 09 2015
  • Mathematica
    palQ[n_] := Reverse[x=IntegerDigits[n]] == x; Select[Range[4,3100], !PrimeQ[#] && And@@palQ/@Join[{Total[Times@@@(x=FactorInteger[#])]}, First/@x]&] (* Jayanta Basu, Jun 05 2013 *)

A046357 Composite palindromes with only palindromic prime factors whose sum is palindromic (counted with multiplicity).

Original entry on oeis.org

4, 6, 8, 9, 121, 1331, 5445, 10201, 13231, 14641, 15251, 18281, 19291, 31613, 35653, 37673, 38683, 52525, 59895, 1030301, 1336331, 3192913, 8117118, 104060401, 134969431, 286121682, 319464913, 677707776
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			319464913 = 10301 * 31013 and 10301 + 31013 = 41314 and all are palindromic.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_]:= Reverse[x=IntegerDigits[n]] == x; t={}; Do[If[!PrimeQ[n] && And@@palQ/@Join[{n, Total[Times@@@(x=FactorInteger[n])]}, First/@x], AppendTo[t,n]],{n, 2, 3.2*10^6}]; t (* Jayanta Basu, Jun 05 2013 *)

Formula

A046355 INTERSECT A002113. - R. J. Mathar, Sep 09 2015
Showing 1-2 of 2 results.