A046375 Odd numbers with exactly 5 palindromic prime factors (counted with multiplicity).
243, 405, 567, 675, 891, 945, 1125, 1323, 1485, 1575, 1875, 2079, 2205, 2475, 2625, 3087, 3125, 3267, 3465, 3675, 4125, 4375, 4851, 5145, 5445, 5775, 6125, 6875, 7203, 7623, 8085, 8181, 8575, 9075, 9625, 10611, 11319, 11979, 12005, 12231, 12705
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
rev:= proc(n) local L,d,i; L:= convert(n,base,10); d:= nops(L); add(L[i]*10^(d-i),i=1..d); end proc: PP:= NULL: for d from 1 to 3 do for x from 10^(d-1) to 10^d-1 do y:= x*10^(d-1) + rev(floor(x/10)); if isprime(y) then PP:= PP,y fi; od; if d = 1 then PP:= PP,11 fi; od: PP:= [PP][2..-1]: npp:= nops(PP): N:= PP[-1]*3^4: Res:= NULL: for i1 from 1 to npp do v1:= PP[i1]; for i2 from 1 to i1 do v2:= v1*PP[i2]; if v2*3^3 > N then break fi; for i3 from 1 to i2 do v3:= v2*PP[i3]; if v3 * 3^2 > N then break fi; for i4 from 1 to i3 do v4:= v3*PP[i4]; if v4* 3 > N then break fi; for i5 from 1 to i4 do v:= v4*PP[i5]; if v > N then break fi; Res:= Res, v od od od od od: sort([Res]); # Robert Israel, Mar 15 2024
Extensions
Offset corrected by Robert Israel, Mar 15 2024