A046498 Palindromes expressible as the sum of 3 consecutive palindromes.
6, 9, 66, 99, 333, 363, 393, 636, 666, 696, 939, 969, 999, 3333, 3663, 3993, 6336, 6666, 6996, 9339, 9669, 9999, 30303, 30603, 30903, 33333, 33633, 33933, 36363, 36663, 36963, 39393, 39693, 39993, 60306, 60606, 60906, 63336, 63636, 63936
Offset: 1
Examples
6666 = 2112 + 2222 + 2332.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..15358 (all terms with <= 13 digits)
- Patrick De Geest, World!Of Numbers
Crossrefs
Cf. A002113.
Programs
-
Python
from itertools import product def ispal(n): s = str(n); return s == s[::-1] def pals(d, base=10): # all d-digit palindromes digits = "".join(str(i) for i in range(base)) for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def auptod(dd): alst = [6, 9] last3 = [7, 8, 9] for d in range(2, dd+1): for p in pals(d): last3 = last3[1:] + [p] if ispal(sum(last3)): alst.append(sum(last3)) return alst print(auptod(5)) # Michael S. Branicky, Jun 09 2021