A046503 Primes with multiplicative persistence value 3.
47, 59, 79, 89, 97, 139, 149, 157, 179, 193, 197, 227, 229, 239, 263, 283, 293, 337, 347, 353, 359, 367, 373, 383, 389, 419, 433, 443, 449, 463, 479, 487, 491, 499, 571, 577, 593, 619, 643, 661, 673, 683, 691, 719, 733, 743, 751, 757, 797, 823, 829, 839
Offset: 1
Examples
47 -> 4 * 7 -> [ 28 ] -> 2 * 8 -> [ 16 ] -> 1 * 6 -> [ 6 ] -> one digit in three steps.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
Programs
-
Maple
filter:= proc(n) local L; if not isprime(n) then return false fi; L:= convert(convert(n,base,10),`*`); if L < 10 then return false fi; L:= convert(convert(L,base,10),`*`); if L < 10 then return false fi; L:= convert(convert(L,base,10),`*`); evalb(L < 10) end proc: select(filter, [seq(i,i=11..1000,2)]); # Robert Israel, Jun 05 2018
-
Mathematica
pr3Q[n_] := Length[NestWhileList[Times @@ IntegerDigits[#] &, n, # > 9 &]] == 4; Select[Prime[Range[147]], pr3Q] (* Jayanta Basu, Jun 26 2013 *)