A046506 Primes with multiplicative persistence value 6.
8867, 23887, 27883, 28387, 28837, 32887, 34487, 34847, 38287, 38447, 43487, 44647, 46447, 47843, 48437, 48473, 49999, 72883, 74843, 78283, 78823, 82387, 82837, 84347, 84437, 87443, 88237, 88327, 94999, 118687, 123887, 126487, 128467
Offset: 1
Examples
8867 -> [ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in six steps.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
Programs
-
Maple
filter:= proc(n) local L,i; L:= convert(convert(n,base,10),`*`); if L < 10 then return false fi; for i from 2 to 5 do L:= convert(convert(L,base,10),`*`); if L < 10 then return false fi od; L:= convert(convert(L,base,10),`*`); evalb(L < 10) end proc: count:= 0: Res:= NULL; p:= 11: while count < 100 do p:= nextprime(p); if filter(p) then count:= count+1; Res:= Res,p fi od: Res; # Robert Israel, Jun 06 2018
Extensions
Offset corrected by Robert Israel, Jun 06 2018