A046650 Number of sensed nonseparable (2-connected) planar maps with n edges and a distinguished face of size 2.
1, 1, 2, 4, 14, 49, 216, 984, 4862, 24739, 130338, 701584, 3852744, 21489836, 121525520, 695307888, 4019381790, 23446201495, 137875564710, 816646459860, 4868578092510, 29196022525905, 176022392938080, 1066433501134560, 6490009570139784, 39659537885087124, 243278423033093336, 1497584057249141728, 9249144367260811824
Offset: 2
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..500
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
Programs
-
Maple
B1nm := proc(n,m) # eq (4.15) local j ; if m>=2 and n>= m then add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!,j=m..min(n,2*m) ) ; %*m/(2*n-m)! ; else 0 ; end if; end proc: B2wj := proc(w,j) # eq (8.21) local k ; if w >= j and j>=1 and w >= 1 then add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!,k=j..min(w,2*j-1) ) ; %*j/(2*w-j+1)! ; else 0; end if; end proc: Brwj := proc(r,w,j) # eq. (8.21) local k ; if w >= j and j>=1 and w>=1 and r > 1 then add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!,k=j..min(w,2*j) ) ; %*j/(2*w-j)! ; else 0 ; end if; end proc: Brnm := proc(r,n,m) if r = 1 then B1nm(n,m) ; elif r = 2 and type(n,'odd') and type (m,'even') then B2wj((n-1)/2,m/2) ; elif modp(n,r) <> 0 or modp(m,r) <> 0 then 0; else Brwj(r,n/r,m/r) ; end if; end proc: L := proc(n,m) # eq. (6.7) add(numtheory[phi](s)*Brnm(s,n,m),s=numtheory[divisors](m)) ; %/m ; end proc: seq(L(n,2),n=2..40) ; # R. J. Mathar, Apr 13 2019
-
Mathematica
B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0]; B2wj[w_, j_] := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0]; Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0]; Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]]; L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m; Table[L[n, 2], {n, 2, 30}] // Flatten (* Jean-François Alcover, Apr 05 2020, after R. J. Mathar *)
-
PARI
a(n) = n-=2; if(n<=0, n==0, (n*binomial(3*n\2, n\2) + binomial(3*n, 2*n+1))/(n*(n+1)) ) \\ Andrew Howroyd, Jan 19 2025
Formula
Reference gives generating functions.
a(n+2) = binomial(floor(3*n/2), floor(n/2))/(n+1) + binomial(3*n, 2*n+1)/(n*(n+1)) for n > 0. - Andrew Howroyd, Jan 19 2025
Extensions
More terms from R. J. Mathar, Apr 13 2019
Name clarified by Andrew Howroyd, Jan 19 2025
Comments