cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046650 Number of sensed nonseparable (2-connected) planar maps with n edges and a distinguished face of size 2.

Original entry on oeis.org

1, 1, 2, 4, 14, 49, 216, 984, 4862, 24739, 130338, 701584, 3852744, 21489836, 121525520, 695307888, 4019381790, 23446201495, 137875564710, 816646459860, 4868578092510, 29196022525905, 176022392938080, 1066433501134560, 6490009570139784, 39659537885087124, 243278423033093336, 1497584057249141728, 9249144367260811824
Offset: 2

Views

Author

Keywords

Comments

From R. J. Mathar, Apr 13 2019: (Start)
Table III with row sums A000087 is (A046653 row-reversed):
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
14, 12, 8, 2, 1;
49, 43, 30, 12, 3, 1;
216, 189, 134, 63, 22, 3, 1;
984, 888, 608, 323, 133, 31, 4, 1;
4862, 4332, 2988, 1671, 759, 238, 48, 4, 1;
...
(End)
Equivalently, by duality, a(n) is the number of sensed nonseparable planar maps with n edges and a distinguished vertex of degree 2. - Andrew Howroyd, Jan 19 2025

Crossrefs

Main diagonal of A046653.
Cf. A000087 (distinguished face of any size).

Programs

  • Maple
    B1nm := proc(n,m) # eq (4.15)
        local j ;
        if m>=2 and n>= m  then
            add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!,j=m..min(n,2*m) ) ;
            %*m/(2*n-m)! ;
        else
            0 ;
        end if;
    end proc:
    B2wj := proc(w,j) # eq (8.21)
        local k ;
        if  w >= j and j>=1 and w >= 1 then
            add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!,k=j..min(w,2*j-1) ) ;
            %*j/(2*w-j+1)! ;
        else
            0;
        end if;
    end proc:
    Brwj := proc(r,w,j) # eq. (8.21)
        local k ;
        if  w >= j and j>=1 and w>=1 and r > 1 then
            add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!,k=j..min(w,2*j) ) ;
            %*j/(2*w-j)! ;
        else
            0 ;
        end if;
    end proc:
    Brnm := proc(r,n,m)
        if r = 1 then
            B1nm(n,m) ;
        elif r = 2 and type(n,'odd') and type (m,'even') then
            B2wj((n-1)/2,m/2) ;
        elif modp(n,r) <> 0 or modp(m,r) <> 0 then
            0;
        else
            Brwj(r,n/r,m/r) ;
        end if;
    end proc:
    L := proc(n,m) # eq. (6.7)
        add(numtheory[phi](s)*Brnm(s,n,m),s=numtheory[divisors](m)) ;
        %/m ;
    end proc:
    seq(L(n,2),n=2..40) ; # R. J. Mathar, Apr 13 2019
  • Mathematica
    B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0];
    B2wj[w_, j_]  := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0];
    Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0];
    Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]];
    L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m;
    Table[L[n, 2], {n, 2, 30}] // Flatten (* Jean-François Alcover, Apr 05 2020, after R. J. Mathar *)
  • PARI
    a(n) = n-=2; if(n<=0, n==0, (n*binomial(3*n\2, n\2) + binomial(3*n, 2*n+1))/(n*(n+1)) ) \\ Andrew Howroyd, Jan 19 2025

Formula

Reference gives generating functions.
a(n+2) = binomial(floor(3*n/2), floor(n/2))/(n+1) + binomial(3*n, 2*n+1)/(n*(n+1)) for n > 0. - Andrew Howroyd, Jan 19 2025

Extensions

More terms from R. J. Mathar, Apr 13 2019
Name clarified by Andrew Howroyd, Jan 19 2025