A046685 Numbers k such that the sum of cubes of divisors of k and the sum of 4th powers of divisors of k are relatively prime.
1, 2, 4, 8, 9, 18, 25, 100, 121, 225, 289, 484, 529, 841, 1089, 1156, 1681, 2116, 2209, 2601, 2809, 3364, 3481, 4761, 5041, 6724, 6889, 7225, 7569, 7921, 8836, 10201, 11236, 11449, 12769, 13225, 13924, 15129, 17161, 18769, 19881, 20164, 21025
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Mathematics StackExchange, Are 1+p^3+p^6 and 1+p^4+p^8 coprime?
Programs
-
Maple
N:= 10^6: # to get all terms <= N sort(select(filter, [seq(t^2,t=1..isqrt(N)),seq(2*t^2,t=1..isqrt(N/2))])); # Robert Israel, Jul 09 2018
-
Mathematica
Select[Range[25000], CoprimeQ[DivisorSigma[3, #], DivisorSigma[4, #]] &] (* Michael De Vlieger, Aug 10 2023 *)
-
PARI
isok(n) = gcd(sigma(n, 3), sigma(n, 4)) == 1; \\ Michel Marcus, Sep 24 2019
Comments