A046735 Nontrivial (i.e., having no nontrivial factors with this property) integers which do not divide any terms of A000213.
2, 27, 91, 103, 163, 199, 203, 221, 247, 305, 371, 377, 397, 421, 551, 559, 757, 779, 883, 991, 1021, 1079, 1087, 1123, 1189, 1199, 1237, 1351, 1521, 1543, 1567, 1609, 1651, 1753, 1769, 1799, 1807, 1873, 1883, 1919, 2009, 2071, 2261, 2539
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1275
Programs
-
Maple
nd:= proc(p) local a,b,c,r,R; a:= 1; b:= 1; c:= 1; R[1,1,1]:= true; do r:= a+b+c mod p; if r = 0 then return false fi; a:= b; b:= c; c:= r; if assigned(R[a,b,c]) or nops({a,b,c})=1 then return true else R[a,b,c]:= true fi; od end proc: N:= 10^4: # to get all terms <= N V:= Vector(N): Res:= NULL: for n from 1 to N do if V[n] = 0 then if nd(n) then Res:= Res,n; V[[seq(k*n,k=2..floor(N/n))]]:= 1; fi fi; od: Res; # Robert Israel, Feb 26 2017
-
Mathematica
nondivisor[n_] := Module[{a = 1, b = 1, c = 1, t}, For[i = 1, i <= n^2, i++, t = Mod[a+b+c, n]; If[t != 0, a = b; b = c; c = t, Return[False]]; If[c == 1 && b == 1 && a == 1, Return[True]]]]; okQ[n_] := Do[If[nondivisor[d], Return[n == d]], {d, Divisors[n]}]; Select[Range[3000], okQ] (* Jean-François Alcover, Mar 05 2019, from PARI *)
-
PARI
nondivisor(n)=my(a=1,b=1,c=1,t);for(i=1,n^2,t=(a+b+c)%n;if(t,a=b;b=c;c=t,return(0));if(c==1&&b==1&&a==1,return(1))) is(n)=fordiv(n,d,if(nondivisor(d),return(n==d)));0 \\ Charles R Greathouse IV, Aug 29 2012
Extensions
Definition corrected by Henry Ayoola (henry.ayoola(AT)googlemail.com), Feb 03 2009
a(1) added by Charles R Greathouse IV, Aug 29 2012