cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046735 Nontrivial (i.e., having no nontrivial factors with this property) integers which do not divide any terms of A000213.

Original entry on oeis.org

2, 27, 91, 103, 163, 199, 203, 221, 247, 305, 371, 377, 397, 421, 551, 559, 757, 779, 883, 991, 1021, 1079, 1087, 1123, 1189, 1199, 1237, 1351, 1521, 1543, 1567, 1609, 1651, 1753, 1769, 1799, 1807, 1873, 1883, 1919, 2009, 2071, 2261, 2539
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    nd:= proc(p) local a,b,c,r,R;
       a:= 1; b:= 1; c:= 1; R[1,1,1]:= true;
       do
         r:= a+b+c mod p;
         if r = 0 then return false fi;
         a:= b; b:= c; c:= r;
         if assigned(R[a,b,c]) or nops({a,b,c})=1
             then return true
             else R[a,b,c]:= true
           fi;
       od
    end proc:
    N:= 10^4: # to get all terms <= N
    V:= Vector(N): Res:= NULL:
    for n from 1 to N do
      if V[n] = 0 then
        if nd(n) then Res:= Res,n; V[[seq(k*n,k=2..floor(N/n))]]:= 1; fi
      fi;
    od:
    Res; # Robert Israel, Feb 26 2017
  • Mathematica
    nondivisor[n_] := Module[{a = 1, b = 1, c = 1, t}, For[i = 1, i <= n^2, i++, t = Mod[a+b+c, n]; If[t != 0, a = b; b = c; c = t, Return[False]]; If[c == 1 && b == 1 && a == 1, Return[True]]]];
    okQ[n_] := Do[If[nondivisor[d], Return[n == d]], {d, Divisors[n]}];
    Select[Range[3000], okQ] (* Jean-François Alcover, Mar 05 2019, from PARI *)
  • PARI
    nondivisor(n)=my(a=1,b=1,c=1,t);for(i=1,n^2,t=(a+b+c)%n;if(t,a=b;b=c;c=t,return(0));if(c==1&&b==1&&a==1,return(1)))
    is(n)=fordiv(n,d,if(nondivisor(d),return(n==d)));0 \\ Charles R Greathouse IV, Aug 29 2012

Extensions

Definition corrected by Henry Ayoola (henry.ayoola(AT)googlemail.com), Feb 03 2009
a(1) added by Charles R Greathouse IV, Aug 29 2012