A046740 Triangle of number of permutations of [n] with 0 successions, by number of rises.
1, 1, 1, 2, 1, 8, 2, 1, 22, 28, 2, 1, 52, 182, 72, 2, 1, 114, 864, 974, 164, 2, 1, 240, 3474, 8444, 4174, 352, 2, 1, 494, 12660, 57194, 61464, 15782, 732, 2, 1, 1004, 43358, 332528, 660842, 373940, 55286, 1496, 2, 1, 2026, 142552, 1747558, 5814124
Offset: 1
Examples
Triangle begins: 1; 1; 1, 2; 1, 8, 2; 1, 22, 28, 2; ...
Links
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
Crossrefs
Programs
-
Mathematica
a[, 1] = 1; a[n, 2] := 2^n - 2*n; a[n_, r_] /; 1 <= r <= n-1 := a[n, r] = r*a[n-1, r] + (n-r)*a[n-1, r-1] + (n-2)*a[n-2, r-1]; a[, ] = 0; row[1] = {{1}}; row[n_] := Table[a[n, r], {r, 1, n-1}]; Table[row[n], {n, 1, 11}] // Flatten (* Jean-François Alcover, Sep 07 2017 *)
Formula
Extensions
More terms from Vladeta Jovovic, Jan 03 2003
Comments