cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046804 a(n) = p mod (p mod 10) where p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 1, 2, 2, 0, 2, 0, 1, 5, 2, 5, 0, 4, 0, 1, 7, 2, 8, 6, 0, 1, 2, 1, 2, 1, 0, 4, 4, 5, 0, 3, 1, 6, 2, 8, 0, 0, 1, 1, 1, 0, 1, 3, 4, 2, 5, 0, 0, 5, 2, 8, 0, 4, 0, 1, 2, 6, 0, 1, 2, 0, 1, 4, 7, 2, 8, 3, 1, 1, 2, 2, 5, 0, 4, 5, 0, 0, 1, 7, 2, 8, 2, 0, 1, 5, 2, 4, 0, 4, 2, 5, 0, 1, 0, 1, 4, 2, 2, 0
Offset: 1

Views

Author

Keywords

Comments

From Robert G. Wilson v, Feb 12 2014: (Start)
a(n)=0 iff p ends in 1 (A030430) or is a single-digit prime, i.e., 2, 3, 5 or 7 (n = 1, 2, 3 or 4),
a(n)=3 iff n is in A142087,
a(n)=6 iff n is in A142094,
a(n)=7 iff n is in A142330,
a(n)=8 iff n is in A142335.
a(n) can never be 9. (End)

Examples

			prime(10) = 29, so a(10) = 29 mod 9 = 2.
		

References

  • Idea derived from "The Creation of New Mathematics: An Application of the Lakatos Heuristic," pp. 292-298 of Philip J. Davis and Reuben Hersh, The Mathematical Experience, Houghton Mifflin Co, 1982. ISBN 0-395-32131-X.

Programs

  • Mathematica
    Mod[#,Last[IntegerDigits[#]]]&/@Prime[Range[110]] (* Harvey P. Dale, Jan 23 2013 *)
    Mod[#,Mod[#,10]]&/@Prime[Range[110]] (* Harvey P. Dale, Aug 22 2020 *)

Extensions

Name edited by Jon E. Schoenfield, Jan 19 2023