A046817 Triangle of generalized Stirling numbers of 2nd kind.
1, 1, 2, 1, 6, 5, 1, 12, 32, 15, 1, 20, 110, 175, 52, 1, 30, 280, 945, 1012, 203, 1, 42, 595, 3465, 8092, 6230, 877, 1, 56, 1120, 10010, 40992, 70756, 40819, 4140, 1, 72, 1932, 24570, 156072, 479976, 638423, 283944, 21147, 1, 90, 3120, 53550, 487704, 2350950, 5660615, 5971350
Offset: 0
Examples
Triangle begins: k = 0 1 2 3 4 sum n 1 1 1 2 1 2 3 3 1 6 5 12 4 1 12 32 15 60 5 1 20 110 175 52 358
Links
- Tilman Piesk, First 100 rows, flattened
- R. Fray, A generating function associated with the generalized Stirling numbers, Fib. Quart. 5 (1967), 356-366.
Crossrefs
Programs
-
Mathematica
a[n_, k_] = Sum[StirlingS2[n, i]*StirlingS2[i, k], {i, k, n}]; Flatten[Table[a[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 53]] (* Jean-François Alcover, Apr 26 2011 *)
Formula
a(n, k) = Sum_{i=k..n} S2(n, i)*S2(i, k).
E.g.f.: exp(exp(exp(x*y)-1)-1)^(1/y). - Vladeta Jovovic, Dec 14 2003
Extensions
More terms from David W. Wilson, Jan 13 2000