cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046817 Triangle of generalized Stirling numbers of 2nd kind.

Original entry on oeis.org

1, 1, 2, 1, 6, 5, 1, 12, 32, 15, 1, 20, 110, 175, 52, 1, 30, 280, 945, 1012, 203, 1, 42, 595, 3465, 8092, 6230, 877, 1, 56, 1120, 10010, 40992, 70756, 40819, 4140, 1, 72, 1932, 24570, 156072, 479976, 638423, 283944, 21147, 1, 90, 3120, 53550, 487704, 2350950, 5660615, 5971350
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
      k = 0    1    2    3    4          sum
n
1         1                                1
2         1    2                           3
3         1    6    5                     12
4         1   12   32   15                60
5         1   20  110  175   52          358
		

Crossrefs

Diagonals give A000558, A000559, A000110, A002378, etc.
Row sums give A000258.
Horizontal mirror triangle is A039810 (matrix square of Stirling2).

Programs

  • Mathematica
    a[n_, k_] = Sum[StirlingS2[n, i]*StirlingS2[i, k], {i, k, n}]; Flatten[Table[a[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 53]]  (* Jean-François Alcover, Apr 26 2011 *)

Formula

a(n, k) = Sum_{i=k..n} S2(n, i)*S2(i, k).
E.g.f.: exp(exp(exp(x*y)-1)-1)^(1/y). - Vladeta Jovovic, Dec 14 2003

Extensions

More terms from David W. Wilson, Jan 13 2000