cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046835 Internal digits of n^2 include digits of n as subsequence, n does not end in 0.

Original entry on oeis.org

3628, 3792, 8882, 14651, 28792, 36574, 37026, 37028, 37073, 58808, 68323, 71213, 75884, 75887, 75888, 87073, 88526, 88796, 88808, 94682, 105125, 105153, 146308, 161574, 269622, 368323, 369255, 369482, 369863, 370137, 370156, 370162, 370178
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 29 2023: (Start)
3628 is in the sequence as 3628^2 = 13162384 and so 3628 is in the internal digits; 1(3)1(6)(2)3(8)4, reading from left to right the digits in brackets are 3628 and all these digits are internal digits of 13162384.
1011 is NOT in the seuence as 1011^2 = 1022121 and so 1011 is in the digits;
(1)(0)22(1)2(1) but not all these digits are internal digits of 1022121. (End)
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def A046835_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            if k%10:
                c = iter(str(k**2)[1:-1])
                if all(map(lambda b:any(map(lambda a:a==b,c)),str(k))):
                    yield k
    A046835_list = list(islice(A046835_gen(),20)) # Chai Wah Wu, Apr 03 2023

A383640 Internal digits of k^3 include digits of k as substring, k does not end in 0.

Original entry on oeis.org

56, 782, 5111, 8089, 8216, 9553, 11768, 14357, 18229, 53257, 64164, 65137, 72556, 98442, 213405, 271516, 830686, 941976, 1969394, 2420681, 2751442, 4150015, 5354867, 7045156, 9590417, 9699457, 10333214, 13427757, 21955652, 31213974, 32743132, 35272742
Offset: 1

Views

Author

Shyam Sunder Gupta, May 03 2025

Keywords

Examples

			56 is in the sequence as 56^3 = 175616 contains 56 in its decimal expansion.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5,10^6],Mod[#,10]>0&&SequenceCount[Rest[Drop[IntegerDigits[#^3],-1]],IntegerDigits[#]]>0&] (* James C. McMahon, May 09 2025 *)

A385709 Least prime p such that the decimal expansion of p^2 contains exactly n distinct primes as substrings.

Original entry on oeis.org

11, 5, 23, 61, 73, 239, 487, 523, 569, 3461, 1319, 3373, 8923, 4937, 12619, 11489, 15569, 32189, 105173, 135319, 46619, 56473, 177127, 234161, 295861, 471923, 664319, 2366387, 3183613, 1092389, 3513877, 7702319, 4632077, 10666177, 13977923, 20825939, 35821939
Offset: 1

Views

Author

Zhining Yang, Jul 07 2025

Keywords

Examples

			a(9) = 569 because 569^2 = 323761, which contains 9 distinct primes as substring:{2,3,7,23,37,61,761,3761,23761}, and no prime less than 569 has 9 solutions.
		

Crossrefs

Programs

  • Mathematica
    b = Table[{}, 9]; Do[d = IntegerDigits[p^2];
     t = Union@Select[FromDigits /@ Flatten[Table[Partition[d, k, 1], {k, Length@d}], 1], PrimeQ]; c = Length@t;
     If[b[[c]] == {}, b[[c]] = {p, p^2, t, c}], {p, Prime@Range@120}]; b // Grid
Showing 1-3 of 3 results.