A046880 Number of isolated-pentagon (IPR) fullerenes with 2n vertices (or carbon atoms).
1, 0, 0, 0, 0, 1, 1, 1, 2, 5, 7, 9, 24, 19, 35, 46, 86, 134, 187, 259, 450, 616, 823, 1233, 1799, 2355, 3342, 4468, 6063, 8148, 10774, 13977, 18769, 23589, 30683, 39393, 49878, 62372, 79362, 98541, 121354, 151201, 186611, 225245, 277930, 335569
Offset: 30
References
- P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 33.
Links
- Jan Goedgebeur, Table of n, a(n) for n = 30..200, terms a(30)..a(120) from Gunnar Brinkmann.
- Gunnar Brinkmann and Andreas W. M. Dress, A constructive enumeration of fullerenes, J. Algorithms 23 (1997), no. 2, 345-358.
- Gunnar Brinkmann, Jan Goedgebeur, Brendan D. McKay, The Generation of Fullerenes, arXiv:1207.7010v1 [math.CO], 2012.
- Gunnar Brinkmann, Andreas Dress, fullgen.
- Gunnar Brinkmann, Jan Goedgebeur, Brendan D. McKay, buckygen.
- CombOS - Combinatorial Object Server, generate fullerenes
- House of Graphs, Fullerenes.
- A. M. Livshits and Yu. E. Lozovik, Cut-and-unfold approach to fullerene enumeration, J. Chem. Inf. Comput. Sci., (2004), vol. 44, 1517-1520.
Extensions
Added a(121)-a(200). a(30)-a(190) is independently confirmed by buckygen and fullgen, while a(191)-a(200) was only computed by buckygen. - Jan Goedgebeur, Aug 08 2012
Comments