Jan Goedgebeur has authored 7 sequences.
A307957
Number of planar graphs of order n with exactly one Hamiltonian cycle.
Original entry on oeis.org
0, 0, 1, 2, 3, 12, 49, 460, 4994, 68234, 997486, 15582567, 253005521, 4250680376, 73293572869, 1293638724177
Offset: 1
A307956
Number of graphs of order n with exactly one Hamiltonian cycle.
Original entry on oeis.org
0, 0, 1, 2, 3, 12, 49, 482, 6380, 135252, 3939509, 166800470, 9739584172, 818717312364, 95353226103276
Offset: 1
A305354
Number of cubic hypohamiltonian graphs on 2n vertices.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 3, 1, 100, 52, 202, 304
Offset: 1
A305351
Number of snarks with circular flow number 5 on 2n vertices.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 9, 25, 98
Offset: 1
A289576
Number of cyclically 5-connected simple cubic graphs on 2n vertices.
Original entry on oeis.org
1, 2, 9, 47, 440, 5588, 88074, 1572604, 30639576, 641467774
Offset: 5
A216834
Number of weak snarks on 2n nodes.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 0, 2, 6, 31, 155, 1297, 12517, 139854, 1764950, 25286953, 404899916
Offset: 1
- G. Brinkmann, J. Goedgebeur, J. Hagglund, and K. Markstrom, Generation and properties of Snarks, arxiv 1206.6690 [math.CO], 2012-2013.
- J. Goedgebeur, E. Máčajová and M. Škoviera, Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44, arXiv:1712.07867 [math.CO], 2017-2019.
- House of Graphs, Snarks
- Eric Weisstein's World of Mathematics, Weak Snark
A216783
Number of maximal triangle-free graphs with n vertices.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 10, 16, 31, 61, 147, 392, 1274, 5036, 25617, 164796, 1337848, 13734745, 178587364, 2911304940, 58919069858, 1474647067521, 45599075629687
Offset: 1
- S. Brandt, G. Brinkmann and T. Harmuth, The Generation of Maximal Triangle-Free Graphs, Graphs and Combinatorics, 16 (2000), 149-157.
- S. Brandt, G. Brinkmann and T. Harmuth, MTF.
- Gunnar Brinkmann, Jan Goedgebeur and J.C. Schlage-Puchta, triangleramsey.
- Gunnar Brinkmann, Jan Goedgebeur, and Jan-Christoph Schlage-Puchta, Ramsey numbers R(K3,G) for graphs of order 10, arXiv 1208.0501 (2012).
- Jan Goedgebeur, On minimal triangle-free 6-chromatic graphs, arXiv:1707.07581 [math.CO] (2017).
- House of Graphs, Maximal triangle-free graphs.
Comments