A046886 Number of divisors d of 2n satisfying (d+1) = prime or number of prime factors of the denominator of the even Bernoulli numbers.
2, 3, 3, 3, 3, 5, 2, 4, 4, 4, 3, 5, 2, 4, 5, 4, 2, 7, 2, 5, 4, 4, 3, 6, 3, 4, 4, 4, 3, 8, 2, 4, 5, 3, 4, 8, 2, 3, 4, 6, 3, 7, 2, 5, 6, 4, 2, 7, 2, 5, 4, 4, 3, 8, 4, 6, 3, 4, 2, 9, 2, 3, 6, 4, 4, 7, 2, 4, 5, 6, 2, 9, 2, 4, 6, 3, 3, 8, 2, 6, 5, 4, 3, 7, 3, 4, 4, 6, 3, 11, 2, 4, 3, 3, 4, 8, 2, 5, 7, 6, 2, 6, 2, 5
Offset: 1
Keywords
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
- Hans Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A046886 := proc(n) A067513(2*n) ; end proc: seq(A046886(n),n=1..100) ; # R. J. Mathar, Aug 07 2022
-
Mathematica
Length[ Select[ Divisors[ 2n ], PrimeQ[ #+1 ]& ] ] or Length[ FactorInteger[ Denominator@BernoulliB[ 2k ] ] ] Table[Count[Divisors[2n],?(PrimeQ[#+1]&)],{n,110}] (* or *) PrimeOmega/@ Denominator[BernoulliB[2*Range[110]]] (* _Harvey P. Dale, Mar 19 2015 *)
Formula
a(n) = A067513(2n). - R. J. Mathar, Aug 07 2022
Comments