A046944 Number of self-avoiding walks of length n on the Laves graph.
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1506, 2982, 5904, 11688, 23094, 45678, 90000, 177660, 349938, 690192, 1359288, 2678808, 5271558, 10381926, 20419224, 40191084, 79025262, 155469228, 305582724, 600935844, 1180783482, 2321203446, 4559743116, 8960747616
Offset: 0
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..40 from Kuz'min et al. (terms up to 37 from Sean A. Irvine)
- Sean A. Irvine, Java program (github).
- M. D. Kuz'min, R. O. Kuzian and J. Richter, Ferromagnetism of the semi-simple cubic lattice, Eur. Phys. J. Plus 135, 750 (2020). See Table 4 (multiply by 2 to get this sequence).
- J. A. Leu, Self-avoiding walks on a pair of three dimensional lattices, Phys. Lett., 29A (1969), 641-642.
- J. A. Leu, D. D. Betts, and C. J. Elliott, High-temperature critical properties of the Ising model on a triple of related lattices, Canadian Journal of Physics, 47 (1969), 1671-1689.
- Wikipedia, Laves graph
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010
a(25) onward corrected by Sean A. Irvine, May 06 2021
Name clarified by Andrey Zabolotskiy, Jun 03 2021
Comments