A047140 Array read by diagonals: T(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no up-step crosses the line y=4x/3. (Thus a path crosses the line only at lattice points and on right-steps.).
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 4, 4, 1, 1, 3, 2, 8, 5, 1, 1, 4, 5, 10, 13, 6, 1, 1, 5, 9, 15, 23, 19, 7, 1, 1, 6, 14, 24, 38, 42, 26, 8, 1, 1, 7, 20, 38, 62, 80, 68, 34, 9, 1, 1, 8, 27, 58, 38, 142, 148, 102, 43, 10, 1, 1, 9, 35, 85, 96, 180, 290
Offset: 0
Examples
Array begins: ====================================== h\k | 0 1 2 3 4 5 6 7 ----+--------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 2 1 2 3 4 5 6 ... 2 | 1 3 4 2 5 9 14 20 ... 3 | 1 4 8 10 15 24 38 58 ... 4 | 1 5 13 23 38 62 38 96 ... 5 | 1 6 19 42 80 142 180 96 ... 6 | 1 7 26 68 148 290 470 566 ... 7 | 1 8 34 102 250 540 1010 1576 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
A(h,k=h)={my(M=matrix(h+1,k+1,i,j,1)); for(h=1, h, for(k=1, k, M[1+h, 1+k] = M[h,1+k] + if(3*k>4*h && 3*(k-1)<4*h, 0, M[1+h,k]))); M} { my(T=A(10)); for(i=1, #T, print(T[i,]))} \\ Andrew Howroyd, Jan 19 2020