cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A047166 Number of nonempty subsets of {1,2,...,n} in which exactly 2/5 of the elements are <= n/2.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 12, 24, 60, 100, 205, 315, 630, 980, 2156, 3528, 8260, 13692, 31620, 51600, 115995, 186945, 418825, 675675, 1535391, 2492919, 5728086, 9324406, 21448791, 34860553, 80006668, 129804808, 298009048, 483483128, 1113181012, 1807560972, 4172914197
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047165.

Programs

  • PARI
    a(n) = {my(m=n\2); sum(k=1, (n-m)\3, binomial(m, 2*k)*binomial(n-m, 3*k))} \\ Andrew Howroyd, Apr 11 2021

Formula

a(n) = Sum_{k>=1} binomial(floor(n/2), 2*k)*binomial(ceiling(n/2), 3*k). - Andrew Howroyd, Apr 11 2021

Extensions

Terms a(35) and beyond from Andrew Howroyd, Apr 11 2021

A047167 Number of nonempty subsets of {1,2,...,n} in which exactly 3/5 of the elements are <= n/2.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 6, 24, 40, 100, 150, 315, 455, 980, 1470, 3528, 5544, 13692, 21630, 51600, 80520, 186945, 290400, 675675, 1056627, 2492919, 3929926, 9324406, 14742910, 34860553, 55107598, 129804808, 205272008, 483483128, 765991032, 1807560972, 2869786524, 6779169543
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047165.

Programs

  • PARI
    a(n) = {my(m=n\2); sum(k=1, m\3, binomial(m, 3*k)*binomial(n-m, 2*k))} \\ Andrew Howroyd, Apr 11 2021

Formula

a(n) = Sum_{k>=1} binomial(floor(n/2), 3*k)*binomial(ceiling(n/2), 2*k). - Andrew Howroyd, Apr 11 2021

Extensions

Terms a(35) and beyond from Andrew Howroyd, Apr 11 2021

A047168 Number of nonempty subsets of {1,2,...,n} in which exactly 4/5 of the elements are <= n/2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 4, 5, 25, 30, 90, 105, 245, 280, 588, 666, 1458, 1665, 4125, 4785, 12705, 14850, 38830, 45331, 113399, 131859, 320411, 371735, 903175, 1048840, 2594540, 3021240, 7594920, 8863698, 22366458, 26122302, 65579982, 76575225, 191126529
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047165.

Programs

  • PARI
    a(n) = {my(m=n\2); sum(k=1, m\4, binomial(m, 4*k)*binomial(n-m, k))} \\ Andrew Howroyd, Apr 11 2021

Formula

a(n) = Sum_{k>=1} binomial(floor(n/2), 4*k)*binomial(ceiling(n/2), k). - Andrew Howroyd, Apr 11 2021

Extensions

Terms a(35) and beyond from Andrew Howroyd, Apr 11 2021
Showing 1-3 of 3 results.