A047236 Numbers that are congruent to {1, 2, 4} mod 6.
1, 2, 4, 7, 8, 10, 13, 14, 16, 19, 20, 22, 25, 26, 28, 31, 32, 34, 37, 38, 40, 43, 44, 46, 49, 50, 52, 55, 56, 58, 61, 62, 64, 67, 68, 70, 73, 74, 76, 79, 80, 82, 85, 86, 88, 91, 92, 94, 97, 98, 100, 103, 104, 106, 109, 110, 112, 115, 116, 118, 121, 122, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 6 in [1, 2, 4]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047236:=n->(6*n-5-cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A047236(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{1, 2, 4}, Mod[#, 6]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
Formula
G.f.: x*(1+x)*(2*x^2+1)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n-5-cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3.
a(3k) = 6k-2, a(3k-1) = 6k-4, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 + log(2+sqrt(3))/(2*sqrt(3)) - log(2)/3. - Amiram Eldar, Dec 14 2021