A047282 Numbers that are congruent to {1, 3, 6} mod 7.
1, 3, 6, 8, 10, 13, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 38, 41, 43, 45, 48, 50, 52, 55, 57, 59, 62, 64, 66, 69, 71, 73, 76, 78, 80, 83, 85, 87, 90, 92, 94, 97, 99, 101, 104, 106, 108, 111, 113, 115, 118, 120, 122, 125, 127, 129, 132, 134, 136, 139, 141
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [1, 3, 6]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047282:=n->(21*n-12+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047282(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{1, 3, 6}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
Formula
G.f.: x*(1+2*x+3*x^2+x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-12+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3*k) = 7*k-1, a(3*k-1) = 7*k-4, a(3*k-2) = 7*k-6. (End)
a(n) = 2*n - 1 + floor(n/3). - Wesley Ivan Hurt, Dec 28 2016