A047312 Numbers that are congruent to {0, 4, 5, 6} mod 7.
0, 4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 28, 32, 33, 34, 35, 39, 40, 41, 42, 46, 47, 48, 49, 53, 54, 55, 56, 60, 61, 62, 63, 67, 68, 69, 70, 74, 75, 76, 77, 81, 82, 83, 84, 88, 89, 90, 91, 95, 96, 97, 98, 102, 103, 104, 105, 109, 110, 111
Offset: 1
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 4, 5, 6]]; // Wesley Ivan Hurt, Jun 03 2016
-
Maple
A047312:=n->(14*n-5+3*I^(2*n)-(3+3*I)*I^(-n)-(3-3*I)*I^n)/8: seq(A047312(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
-
Mathematica
Table[(14n-5+3*I^(2n)-(3+3*I)*I^(-n)-(3-3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 03 2016 *)
Formula
G.f.: x^2*(4+x+x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-5+3*i^(2*n)-(3+3*i)*i^(-n)-(3-3*i)*i^n)/8 where i=sqrt(-1).