A047331 Numbers that are congruent to {2, 3, 5, 6} mod 7.
2, 3, 5, 6, 9, 10, 12, 13, 16, 17, 19, 20, 23, 24, 26, 27, 30, 31, 33, 34, 37, 38, 40, 41, 44, 45, 47, 48, 51, 52, 54, 55, 58, 59, 61, 62, 65, 66, 68, 69, 72, 73, 75, 76, 79, 80, 82, 83, 86, 87, 89, 90, 93, 94, 96, 97, 100, 101, 103, 104, 107, 108, 110, 111
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [2, 3, 5, 6]]; // Wesley Ivan Hurt, Jun 03 2016
-
Maple
A047331:=n->(14*n-3-3*I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/8: seq(A047331(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
-
Mathematica
Table[(14n-3-3*I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 03 2016 *)
Formula
G.f.: x*(2+x+2*x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-3-3*i^(2*n)-(1-i)*i^(-n)-(1+i)*i^n)/8 where i=sqrt(-1).