A298397 Pentagonal numbers divisible by 4.
0, 12, 92, 176, 376, 532, 852, 1080, 1520, 1820, 2380, 2752, 3432, 3876, 4676, 5192, 6112, 6700, 7740, 8400, 9560, 10292, 11572, 12376, 13776, 14652, 16172, 17120, 18760, 19780, 21540, 22632, 24512, 25676, 27676, 28912, 31032, 32340, 34580, 35960, 38320, 39772, 42252
Offset: 1
Examples
A000326(8) = 92 is in the sequence because 92 = 4*23.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
GAP
List([1..50], n -> 8*n*(3*n-7)-(6*n-7)*(-1)^n+33);
-
Magma
[8*n*(3*n-7)-(6*n-7)*(-1)^n+33: n in [1..50]];
-
Maple
P:=proc(n) local x; x:=n*(3*n-1)/2; if x mod 4=0 then x; fi; end: seq(P(i),i=0..2*10^2); # Paolo P. Lava, Jan 19 2018
-
Mathematica
Table[8 n (3 n - 7) - (6 n - 7) (-1)^n + 33, {n, 1, 50}] (* Second program (using definition): *) Select[Table[k*(3*k - 1)/2, {k, 0, 200}], Divisible[#, 4]&] (* Jean-François Alcover, Jan 19 2018 *)
-
Maxima
makelist(8*n*(3*n-7)-(6*n-7)*(-1)^n+33, n, 1, 50);
-
PARI
vector(50, n, nn; 8*n*(3*n-7)-(6*n-7)*(-1)^n+33)
-
PARI
concat(0, Vec(4*x^2*(3 + 20*x + 15*x^2 + 10*x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jan 20 2018
-
Sage
[8*n*(3*n-7)-(6*n-7)*(-1)^n+33 for n in (1..50)]
Formula
O.g.f.: 4*x^2*(3 + 20*x + 15*x^2 + 10*x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: (33 - 32*x + 24*x^2)*exp(x) + (7 + 6*x)*exp(-x) - 40.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 8*n*(3*n - 7) - (6*n - 7)*(-1)^n + 33.
From Colin Barker, Jan 20 2018: (Start)
a(n) = 24*n^2 - 62*n + 40 for n even.
a(n) = 24*n^2 - 50*n + 26 for n odd. (End)
Comments