A047439 Numbers that are congruent to {0, 1, 5, 6} mod 8.
0, 1, 5, 6, 8, 9, 13, 14, 16, 17, 21, 22, 24, 25, 29, 30, 32, 33, 37, 38, 40, 41, 45, 46, 48, 49, 53, 54, 56, 57, 61, 62, 64, 65, 69, 70, 72, 73, 77, 78, 80, 81, 85, 86, 88, 89, 93, 94, 96, 97, 101, 102, 104, 105, 109, 110, 112, 113, 117, 118, 120, 121, 125
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 1, 5, 6]]; // Wesley Ivan Hurt, May 22 2016
-
Maple
A047439:=n->add(gcd(i+2, i-2), i=1..n); seq(A047439(n), n=0..100); # Wesley Ivan Hurt, Jan 23 2014
-
Mathematica
Table[Sum[GCD[i + 2, i - 2], {i, n}], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 23 2014 *)
Formula
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=5 and b(k)=2^(k+1) for k>1. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+4*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
a(n) = Sum_{i=1..n} gcd(i+2, i-2). - Wesley Ivan Hurt, Jan 23 2014
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2n+(1+i)*(4i-4-(1-i)*i^(2n)-i^(1-n)+i^n)/4 where i=sqrt(-1).
Sum_{n>=2} (-1)^n/a(n) = (2*sqrt(2)-1)*Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
Extensions
More terms from Wesley Ivan Hurt, May 22 2016