cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047439 Numbers that are congruent to {0, 1, 5, 6} mod 8.

Original entry on oeis.org

0, 1, 5, 6, 8, 9, 13, 14, 16, 17, 21, 22, 24, 25, 29, 30, 32, 33, 37, 38, 40, 41, 45, 46, 48, 49, 53, 54, 56, 57, 61, 62, 64, 65, 69, 70, 72, 73, 77, 78, 80, 81, 85, 86, 88, 89, 93, 94, 96, 97, 101, 102, 104, 105, 109, 110, 112, 113, 117, 118, 120, 121, 125
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=5 and b(k)=2^(k+1) for k>1. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+4*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
a(n) = Sum_{i=1..n} gcd(i+2, i-2). - Wesley Ivan Hurt, Jan 23 2014
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2n+(1+i)*(4i-4-(1-i)*i^(2n)-i^(1-n)+i^n)/4 where i=sqrt(-1).
a(2n) = A047452, a(2n-1) = A047615(n). (End)
Sum_{n>=2} (-1)^n/a(n) = (2*sqrt(2)-1)*Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021

Extensions

More terms from Wesley Ivan Hurt, May 22 2016