cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A047490 Numbers that are congruent to {0, 1, 2, 3, 5, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59, 61, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 79, 80, 81, 82, 83, 85, 87, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 5, 7]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047490:=n->(24*n-30+6*sqrt(3)*cos((1-2*n)*Pi/6)+2*sqrt(3)*cos((1+4*n)*Pi/6))/18: seq(A047490(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)

Formula

G.f.: x^2*(x^4+x^3+x^2+1)/((x-1)^2*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Jun 22 2012
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.
a(n) = (24*n-30+6*sqrt(3)*cos((1-2n)*Pi/6)+2*sqrt(3)*cos((1+4n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-3, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (2*sqrt(2)-3)*Pi/16 + (5-sqrt(2))*log(2)/8 + sqrt(2)*log(sqrt(2)+2)/4. - Amiram Eldar, Dec 26 2021

A047505 Numbers that are congruent to {0, 1, 2, 3, 6, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 86, 87, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047505:=n->(24*n-27-3*cos(n*Pi)+12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18: seq(A047505(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)

Formula

G.f.: x^2*(1+x+x^2+3*x^3+x^4+x^5) / ( (1+x)*(x^2-x+1)*(1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-27-3*cos(n*Pi)+12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + (12-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 26 2021
Showing 1-2 of 2 results.