A047504 Numbers that are congruent to {1, 2, 3, 4, 5, 7} mod 8.
1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 39, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 87
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [1, 2, 3, 4, 5, 7]]; // Wesley Ivan Hurt, Jun 16 2016
-
Maple
A047504:=n->(12*n-9+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9: seq(A047504(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
-
Mathematica
Select[Range[0, 100], MemberQ[{1, 2, 3, 4, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
Formula
G.f.: x*(1+x^2+x^4+x^5) / ( (x^2-x+1)*(1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.
a(n) = (12*n-9+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9.
a(6k) = 8k-1, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)+1)*Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 28 2021