A047608 Numbers that are congruent to {4, 5} mod 8.
4, 5, 12, 13, 20, 21, 28, 29, 36, 37, 44, 45, 52, 53, 60, 61, 68, 69, 76, 77, 84, 85, 92, 93, 100, 101, 108, 109, 116, 117, 124, 125, 132, 133, 140, 141, 148, 149, 156, 157, 164, 165, 172, 173, 180, 181, 188, 189, 196, 197, 204, 205, 212, 213, 220, 221, 228, 229
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Select[Range[230], MemberQ[{4, 5}, Mod[#, 8]] &] (* Amiram Eldar, Dec 19 2021 *)
-
PARI
a(n) = 4*n - 3*(1 + (-1)^n)/2 \\ David Lovler, Aug 20 2022
Formula
G.f.: x*(4+x+3*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Sep 22 2016
a(n) = 4n - 3*(1 + (-1)^n)/2 or a(n) = 4n - 3*((n-1) mod 2). - Heinz Ebert, Jul 12 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/16 - log(2)/4 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 19 2021
E.g.f.: 3 + ((8*x - 3)*exp(x) - 3*exp(-x))/2. - David Lovler, Aug 20 2022