cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047638 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^13 in powers of x.

Original entry on oeis.org

1, -13, 78, -286, 702, -1131, 845, 1300, -5928, 11583, -13715, 5915, 15834, -47477, 73658, -71201, 20436, 79391, -198796, 280345, -258557, 92807, 200850, -536341, 773916, -768222, 432705, 204477, -979628, 1626196, -1856569, 1471184, -452192
Offset: 13

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(13) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    N:= 100: # to get a(13)..a(N)
    G:= (mul(1-(-x)^j,j=1..N)-1)^13:
    S:= series(G,x,N+1):
    seq(coeff(S,x,n),n=13..N); # Robert Israel, Aug 08 2018
  • Mathematica
    With[{k=13}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • PARI
    my(x='x+O('x^40)); Vec((eta(-x)-1)^13) \\ Joerg Arndt, Sep 07 2023
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=75; k=13;
    def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
    def A047638_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(k,x) ).list()
    a=A047638_list(m); a[k:] # G. C. Greubel, Sep 07 2023
    

Formula

a(n) = [x^n]( QPochhammer(-x) - 1 )^13. - G. C. Greubel, Sep 07 2023

Extensions

Definition corrected by Robert Israel, Aug 08 2018