A047638 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^13 in powers of x.
1, -13, 78, -286, 702, -1131, 845, 1300, -5928, 11583, -13715, 5915, 15834, -47477, 73658, -71201, 20436, 79391, -198796, 280345, -258557, 92807, 200850, -536341, 773916, -768222, 432705, 204477, -979628, 1626196, -1856569, 1471184, -452192
Offset: 13
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 13..10000
- H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
- H. Gupta, On the coefficients of the powers of Dedekind's modular form (annotated and scanned copy)
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^(13) )); // G. C. Greubel, Sep 07 2023 -
Maple
N:= 100: # to get a(13)..a(N) G:= (mul(1-(-x)^j,j=1..N)-1)^13: S:= series(G,x,N+1): seq(coeff(S,x,n),n=13..N); # Robert Israel, Aug 08 2018
-
Mathematica
With[{k=13}, Drop[CoefficientList[Series[(QPochhammer[-x] -1)^k, {x,0, 75}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
-
PARI
my(x='x+O('x^40)); Vec((eta(-x)-1)^13) \\ Joerg Arndt, Sep 07 2023
-
SageMath
from sage.modular.etaproducts import qexp_eta m=75; k=13; def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k def A047638_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(k,x) ).list() a=A047638_list(m); a[k:] # G. C. Greubel, Sep 07 2023
Formula
a(n) = [x^n]( QPochhammer(-x) - 1 )^13. - G. C. Greubel, Sep 07 2023
Extensions
Definition corrected by Robert Israel, Aug 08 2018