cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A047666 Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k) = a(n-1,k-1) + a(n-1,k) + a(n,k-1).

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 10, 10, 4, 5, 17, 25, 17, 5, 6, 26, 52, 52, 26, 6, 7, 37, 95, 129, 95, 37, 7, 8, 50, 158, 276, 276, 158, 50, 8, 9, 65, 245, 529, 681, 529, 245, 65, 9, 10, 82, 360, 932, 1486, 1486, 932, 360, 82, 10, 11, 101, 507, 1537, 2947, 3653
Offset: 1

Views

Author

Keywords

Crossrefs

Main diagonal is A002002. Rows give A002522, A047667, A047668, ...

Programs

  • Maple
    A047666 := proc(n,k) option remember; if n = 1 then k; elif k = 1 then n; else A047666(n-1,k-1)+A047666(n,k-1)+A047666(n-1,k); fi; end;
  • Mathematica
    nmax = 11; a[1, k_] := k; a[n_, 1] := n; a[n_, k_] := a[n, k] = a[n-1, k-1] + a[n, k-1] + a[n-1, k]; Flatten[ Table[ a[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Feb 10 2012 *)

Formula

T(n, m) = (Sum_{i=1..n-m}(2*i+1)*U(n-i-1, m-1)) + (Sum_{i=1..m} (2*i+1)*U(n-2, m-i)) - U(n-2, m-1) where U(n, m) = A008288(n, m). - Floor van Lamoen, Aug 16 2001

A192793 Molecular topological indices of the crossed prism graphs.

Original entry on oeis.org

108, 360, 900, 1872, 3420, 5688, 8820, 12960, 18252, 24840, 32868, 42480, 53820, 67032, 82260, 99648, 119340, 141480, 166212, 193680, 224028, 257400, 293940, 333792, 377100, 424008, 474660, 529200, 587772, 650520, 717588, 789120, 865260, 946152, 1031940, 1122768
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Crossrefs

Cf. A047667.

Programs

  • PARI
    my(x='x+O('x^37)); Vec(36*x*(3-2*x+3*x^2)/(x-1)^4) \\ Elmo R. Oliveira, Aug 26 2025

Formula

a(n) = 12*n*(2*n^2 + 7).
G.f.: 36*x*(3*x^2-2*x+3)/(x-1)^4. - Colin Barker, Nov 04 2012
From Elmo R. Oliveira, Aug 26 2025: (Start)
E.g.f.: 12*x*(9 + 6*x + 2*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
a(n) = 36*A047667(n). (End)

Extensions

More terms from Elmo R. Oliveira, Aug 26 2025
Showing 1-2 of 2 results.