cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047695 Nonnegative y such that y^2 = C(x,0) + C(x,1) + C(x,2) + C(x,3) is soluble in integers.

Original entry on oeis.org

0, 1, 2, 8, 24, 260, 8672
Offset: 0

Views

Author

Keywords

Examples

			For y = 8, we have 8^2 = 64 = 1 + 7 + 21 + 35 = Sum_{k=0..3} C(x, k) for x = 7.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section D3.

Crossrefs

Cf. A047694 (the corresponding x values).

Programs

  • Mathematica
    r[x_] := Reduce[y >= 0 && 6*y^2 == (x + 1)*(x^2 - x + 6), {y}, Integers]; Reap[ Do[ If[r[x] =!= False, Sow[y /. ToRules[r[x]]]], {x, -10, 1000}]][[2, 1]] (* Jean-François Alcover, Jul 12 2012 *)
  • PARI
    A047695=[y|n<-[-1..777], issquare(binomial(n+1, 3)+n+1,&y)] \\ M. F. Hasler, Jun 22 2024

Formula

a(n) = sqrt(A000125(A047694(n))), where sqrt = A000194 or A000196. - M. F. Hasler, Jun 22 2024