A047707 Number of monotone Boolean functions of n variables with 3 mincuts. Also Sperner systems with 3 blocks.
0, 0, 0, 2, 64, 1090, 14000, 153762, 1533504, 14356610, 128722000, 1119607522, 9528462944, 79817940930, 660876543600, 5424917141282, 44246078560384, 359144709794050, 2904688464582800, 23429048035827042, 188593339362097824
Offset: 0
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,3).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1107
- K. S. Brown, Dedekind's problem.
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- G. Kilibarda, Enumeration of certain classes of antichains, Publications de l'Institut Mathematique, Nouvelle série, 97 (111) (2015), 69-87 DOI: 10.2298/PIM140406001K. See page 86, formula for alpha^hat(3,n).
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (28,-315,1820,-5684,9072,-5760).
Programs
-
Mathematica
Table[Binomial[2^n, 3] - (6^n - 5^n - 4^n + 3^n), {n, 20}] (* or *) CoefficientList[Series[-2 x^3 (36 x^2 - 4 x - 1)/((2 x - 1) (3 x - 1) (4 x - 1) (5 x - 1) (6 x - 1) (8 x - 1)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 26 2016 *)
-
PARI
a(n)=binomial(2^n,3)-(6^n-5^n-4^n+3^n) \\ Charles R Greathouse IV, Apr 08 2016
Formula
a(n) = (2^n)*(2^n - 1)*(2^n - 2)/6 - (6^n - 5^n - 4^n + 3^n).
G.f.: -2*x^3*(36*x^2-4*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Jul 31 2012
a(n) = Binomial(2^n,3) - (6^n - 5^n - 4^n + 3^n). - Ross La Haye, Jan 26 2016
Comments