A047714 Sums of 3 but no fewer nonzero fourth powers.
3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 3000: # for terms <= N F1:= {seq(i^4,i=1..floor(N^(1/4)))}: n1:= nops(F1): F2:= select(`<=`,{seq(seq(F1[i]+F1[j],i=1..j),j=1..nops(F1))},N): F3:= select(`<=`,{seq(seq(s+t,s=F1),t=F2)},N): A:= sort(convert(F3 minus (F2 union F1), list)); # Robert Israel, Jul 24 2020
-
Python
def aupto(lim): p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim) p2 = set(a+b for a in p1 for b in p1 if a+b <= lim) p3 = set(apb+c for apb in p2 for c in p1 if apb+c <= lim) return sorted(p3-p2-p1) print(aupto(2400)) # Michael S. Branicky, Mar 18 2021
Formula
A002377(a(n)) = 3. - Robert Israel, Jul 24 2020
Comments