A047715 Numbers that are the sum of 4 but no fewer nonzero fourth powers.
4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 259, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153
Offset: 1
Keywords
Crossrefs
Programs
-
Python
limit = 1153 from functools import lru_cache qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 3 <= limit] qds = set(qd) @lru_cache(maxsize=None) def findsums(n, m): if m == 1: return {(n,)} if n in qds else set() return set(tuple(sorted(t+(q,))) for q in qds for t in findsums(n-q, m-1)) A003338s = set(n for n in range(4, limit+1) if len(findsums(n, 4)) >= 1) A003337s = set(n for n in range(3, limit+1) if len(findsums(n, 3)) >= 1) A003336s = set(n for n in range(2, limit+1) if len(findsums(n, 2)) >= 1) print(sorted(A003338s - A003337s - A003336s - qds)) # Michael S. Branicky, Apr 19 2021
Formula
Equals A003338 - A344188 - A344187 - A000583, where "-" denotes "set difference". - Sean A. Irvine, May 15 2021
Comments