cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047718 Numbers that are the sum of 7 but no fewer nonzero fourth powers.

Original entry on oeis.org

7, 22, 37, 52, 67, 87, 102, 112, 117, 132, 147, 167, 177, 182, 197, 212, 227, 242, 247, 262, 277, 292, 307, 322, 327, 342, 352, 357, 372, 387, 402, 407, 417, 422, 437, 452, 467, 482, 487, 502, 517, 532, 547, 562, 567, 577, 582, 592, 597, 612, 631, 646, 662
Offset: 1

Views

Author

Arlin Anderson (starship1(AT)gmail.com)

Keywords

Crossrefs

Programs

  • PARI
    upto(n)={my(e=7); my(s=sum(k=1, sqrtint(sqrtint(n)), x^(k^4)) + O(x*x^n)); my(p=s^e, q=(1 + s)^(e-1)); select(k->polcoeff(p,k) && !polcoeff(q,k), [1..n])} \\ Andrew Howroyd, Jul 06 2018
    
  • Python
    from itertools import combinations_with_replacement as mc
    def aupto(limit):
        qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 6 <= limit]
        ss = [set(sum(c) for c in mc(qd, i)) for i in range(8)]
        s7nf = ss[7] - ss[6] - ss[5] - ss[4] - ss[3] - ss[2] - ss[1]
        return sorted(s for s in s7nf if s <= limit)
    print(aupto(663)) # Michael S. Branicky, Jul 22 2021