A047762 Number of chiral pairs of dissectable polyhedra with n tetrahedral cells and symmetry of type E.
0, 0, 0, 0, 1, 0, 6, 0, 32, 0, 176, 0, 952, 0, 5302, 0, 29960, 0, 172536, 0, 1007575, 0, 5959656, 0, 35622384, 0, 214875104, 0, 1306303424, 0, 7995896502, 0, 49236826080, 0, 304799714960, 0, 1895785216039, 0, 11841367945110, 0, 74245791718824
Offset: 1
Keywords
Links
- L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67.
- Robert A. Russell, Mathematica Graphics3D program for A047762 example.
Crossrefs
Programs
-
Mathematica
Table[If[OddQ[n],Binomial[(3n-1)/2,(n-1)/2]/(n+1)-If[1==Mod[n,4],Binomial[(3n-3)/4,(n-1)/4]/((n+1))+(4Binomial[(3n+1)/4,(n-1)/4]-If[1==Mod[n,8],4Binomial[(3n-3)/8,(n-1)/8],8Binomial[(3n-7)/8,(n-5)/8]])/(n+3),2Binomial[(3n+3)/4,(n+1)/4]/(n+3)],0]/2,{n,40}] (* Robert A. Russell, Mar 22 2024 *)
Formula
If n=2m+1 then (1/4)*(A047749(n) - 2*A047760(n) - 6*A047758(n) - 2*A047754(n) - 3*A047753(n) - 2*A047752(n) - A047751(n)), otherwise 0.
G.f.: (z^2*G(z^2)^2 - (2+z^2)*G(z^4) - 2*z^2*G(z^4)^2 + 2*(1 + z^2*G(z^8) + z^6*G(z^8)^2)) / (4*z), where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024
Comments