A047765 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type P.
0, 0, 0, 1, 0, 2, 0, 2, 0, 7, 0, 12, 0, 29, 0, 55, 0, 143, 0, 271, 0, 728, 0, 1428, 0, 3873, 0, 7752, 0, 21318, 0, 43256, 0, 120175, 0, 246675, 0, 690678, 0, 1430715, 0, 4032015, 0, 8414610, 0, 23841480, 0, 50067108, 0, 142498637, 0, 300830572
Offset: 1
Keywords
Links
- L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67.
- Robert A. Russell, Mathematica Graphics3D program for A047765 examples
Crossrefs
Programs
-
Mathematica
Table[If[OddQ[n],0,If[OddQ[n/2],2Binomial[(3n-2)/4,(n-2)/4],Binomial[3n/4,n/4]]/(n/2+1)-Switch[Mod[n,12],2,6Binomial[(n-2)/4,(n-2)/12],8,12Binomial[(n-4)/4,(n-2)/6],,0]/(n+4)],{n,52}] (* _Robert A. Russell, Mar 22 2024 *)
Formula
G.f.: G(z^4) + z^2*G(z^4)^2 - z^2*G(z^12) - z^8*G(z^12)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024
Comments