cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047774 Number of chiral pairs of dissectable polyhedra with n tetrahedral cells and symmetry of type C.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 5, 6, 0, 26, 32, 0, 133, 176, 0, 708, 952, 0, 3861, 5302, 0, 21604, 29960, 0, 123266, 172535, 0, 715221, 1007575, 0, 4206956, 5959656, 0, 25032840, 35622384, 0, 150413348, 214875099, 0, 911379384, 1306303424, 0, 5562367173
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type C chiral symmetry and n tetrahedral cells. The axis of rotational symmetry is the altitude of a tetrahedral cell (32); the order of the symmetry group is 3. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 25 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047749 (type U), A047751 (type K), A047752 (type J), A047764 (type Q), A047766 (types N|O), A047773 (type D).

Programs

  • Maple
    # T=A001764
    T := proc(n)
        if n < 0 then
            0;
        else
            (3*n)!/n!/(2*n+1)! ;
        end if;
    end proc:
    # U=A047749
    U := proc(n)
        if type(n,'integer') then
            if type(n,'even') then
                T(n/2) ;
            else
                (3*n-1)/(n+1)*T((n-1)/2) ;
            end if;
        else
            0 ;
        end if;
    end proc:
    # V=A047750
    V := proc(n)
        if type(n,'integer') then
            if type(n,'even') then
                2*U(n+1)-U(n) ;
            else
                2*U(n+1) ;
            end if;
        else
            0;
        end if;
    end proc:
    K := proc(n)
        if n < 1 then
            0 ;
        elif n = 1 then
            1;
        else
            U((n-5)/12) ;
        end if;
    end proc:
    J := proc(n)
        if type((n-5)/12,'integer') then
            T((n-5)/12)-K(n) ;
            %/2 ;
        else
            0;
        end if ;
    end proc:
    Q := proc(n)
        if type((n-2)/6,'integer') then
            U((n-2)/6) ;
        else
            0 ;
        end if;
    end proc:
    N := proc(n)
        if type((n-2)/6,'integer') then
            T((n-2)/6)-Q(n) ;
            %/2 ;
        else
            0;
        end if ;
    end proc:
    DD := proc(n)
        2*U((n-1)/3)+V((n-2)/3)-2*K(n)-Q(n) ;
        %/2 ;
    end proc:
    OO := proc(n)
        if type((n-2)/6,'integer') then
            T((n-2)/6)-Q(n) ;
            %/2 ;
        else
            0;
        end if ;
    end proc:
    C := proc(n)
        if n = 1 then
            0;
          elif modp(n,3) = 1 then
            T((n-1)/3)-DD(n) ;
            %/2 ;
        else
            U((2*n-1)/3)-2*DD(n)-4*J(n) -2*K(n)-2*N(n)-2*OO(n)-Q(n) ;
            %/4 ;
        end if;
    end proc:
    seq(C(n),n=1..50) ; # R. J. Mathar, Jul 10 2013
  • Mathematica
    t[n_?IntegerQ] := Binomial[3 n, n] / (2 n + 1); t[_] = 0;
    u[n_] := t[n/2] + ((3n-1)/(n+1)) t[(n-1)/2];
    c[n_] := (2 (t[(n-1)/3] - u[(n-1)/3] - u[(n+1)/3] + u[(n-2)/6] + u[(n-5)/12] - t[(n-5)/12]) + u[(2n-1)/3] - t[(n-2)/6]) / 4;
    Array[c, 46] (* Andrey Zabolotskiy, Jul 30 2023 and Apr 03 2024, using R. J. Mathar's code above *)
    Table[(If[2==Mod[n,3],3Binomial[n-1,(n-2)/3]-If[2==Mod[n,6],3Binomial[(n-2)/2,(n-2)/6],0],0]/(2n+2)-Switch[Mod[n,3],1,If[1==Mod[n,6],3Binomial[(n-1)/2,(n-1)/6],6Binomial[(n-2)/2,(n-4)/6]]/(n+2)-3Binomial[n-1,(n-1)/3]/(2n+1),2,If[2==Mod[n,6],6Binomial[n/2,(n-2)/6]-If[2==Mod[n,12],6Binomial[(n-2)/4,(n-2)/12],12Binomial[n/4-1,(n-8)/12]],3Binomial[(n+1)/2,(n+1)/6]]/(n+4),,0]-If[5==Mod[n,12],6Binomial[(n-5)/4,(n-5)/12]/(n+1)-If[5==Mod[n,24],12Binomial[(n-5)/8,(n-5)/24],24Binomial[(n-9)/8,(n-17)/24]]/(n+7),0])/2,{n,50}] (* _Robert A. Russell, Mar 25 2024 *)

Formula

From Robert A. Russell, Mar 25 2024: (Start)
a(n) = (2*A001764((n-1)/3) + A047749((2n-1)/3) - 2*A047773(n) - 4*A047752(n) - 2*A047751(n) - 4*A047766(n) - A047773(n)) / 4.
G.f.: ((1 - G(z^6))/z + z^2*(G(z^3)^2 - G(z^6))/2 + z*G(z^3) - z*G(z^6) - z^2*G(z^6)^2 - z^4*G(z^6)^2 + z^2*G(z^12) - z^5*G(z^12) + z^8*G(z^12)^2 + z^5*G(z^24) + z^17*G(z^24)^2) / 2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

Extensions

More terms from R. J. Mathar, Jul 10 2013