A047774 Number of chiral pairs of dissectable polyhedra with n tetrahedral cells and symmetry of type C.
0, 0, 0, 0, 0, 0, 1, 1, 0, 5, 6, 0, 26, 32, 0, 133, 176, 0, 708, 952, 0, 3861, 5302, 0, 21604, 29960, 0, 123266, 172535, 0, 715221, 1007575, 0, 4206956, 5959656, 0, 25032840, 35622384, 0, 150413348, 214875099, 0, 911379384, 1306303424, 0, 5562367173
Offset: 1
Links
- L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67.
- Robert A. Russell, Mathematica Graphics3D program for A047774 examples.
Crossrefs
Programs
-
Maple
# T=A001764 T := proc(n) if n < 0 then 0; else (3*n)!/n!/(2*n+1)! ; end if; end proc: # U=A047749 U := proc(n) if type(n,'integer') then if type(n,'even') then T(n/2) ; else (3*n-1)/(n+1)*T((n-1)/2) ; end if; else 0 ; end if; end proc: # V=A047750 V := proc(n) if type(n,'integer') then if type(n,'even') then 2*U(n+1)-U(n) ; else 2*U(n+1) ; end if; else 0; end if; end proc: K := proc(n) if n < 1 then 0 ; elif n = 1 then 1; else U((n-5)/12) ; end if; end proc: J := proc(n) if type((n-5)/12,'integer') then T((n-5)/12)-K(n) ; %/2 ; else 0; end if ; end proc: Q := proc(n) if type((n-2)/6,'integer') then U((n-2)/6) ; else 0 ; end if; end proc: N := proc(n) if type((n-2)/6,'integer') then T((n-2)/6)-Q(n) ; %/2 ; else 0; end if ; end proc: DD := proc(n) 2*U((n-1)/3)+V((n-2)/3)-2*K(n)-Q(n) ; %/2 ; end proc: OO := proc(n) if type((n-2)/6,'integer') then T((n-2)/6)-Q(n) ; %/2 ; else 0; end if ; end proc: C := proc(n) if n = 1 then 0; elif modp(n,3) = 1 then T((n-1)/3)-DD(n) ; %/2 ; else U((2*n-1)/3)-2*DD(n)-4*J(n) -2*K(n)-2*N(n)-2*OO(n)-Q(n) ; %/4 ; end if; end proc: seq(C(n),n=1..50) ; # R. J. Mathar, Jul 10 2013
-
Mathematica
t[n_?IntegerQ] := Binomial[3 n, n] / (2 n + 1); t[_] = 0; u[n_] := t[n/2] + ((3n-1)/(n+1)) t[(n-1)/2]; c[n_] := (2 (t[(n-1)/3] - u[(n-1)/3] - u[(n+1)/3] + u[(n-2)/6] + u[(n-5)/12] - t[(n-5)/12]) + u[(2n-1)/3] - t[(n-2)/6]) / 4; Array[c, 46] (* Andrey Zabolotskiy, Jul 30 2023 and Apr 03 2024, using R. J. Mathar's code above *) Table[(If[2==Mod[n,3],3Binomial[n-1,(n-2)/3]-If[2==Mod[n,6],3Binomial[(n-2)/2,(n-2)/6],0],0]/(2n+2)-Switch[Mod[n,3],1,If[1==Mod[n,6],3Binomial[(n-1)/2,(n-1)/6],6Binomial[(n-2)/2,(n-4)/6]]/(n+2)-3Binomial[n-1,(n-1)/3]/(2n+1),2,If[2==Mod[n,6],6Binomial[n/2,(n-2)/6]-If[2==Mod[n,12],6Binomial[(n-2)/4,(n-2)/12],12Binomial[n/4-1,(n-8)/12]],3Binomial[(n+1)/2,(n+1)/6]]/(n+4),,0]-If[5==Mod[n,12],6Binomial[(n-5)/4,(n-5)/12]/(n+1)-If[5==Mod[n,24],12Binomial[(n-5)/8,(n-5)/24],24Binomial[(n-9)/8,(n-17)/24]]/(n+7),0])/2,{n,50}] (* _Robert A. Russell, Mar 25 2024 *)
Formula
From Robert A. Russell, Mar 25 2024: (Start)
a(n) = (2*A001764((n-1)/3) + A047749((2n-1)/3) - 2*A047773(n) - 4*A047752(n) - 2*A047751(n) - 4*A047766(n) - A047773(n)) / 4.
G.f.: ((1 - G(z^6))/z + z^2*(G(z^3)^2 - G(z^6))/2 + z*G(z^3) - z*G(z^6) - z^2*G(z^6)^2 - z^4*G(z^6)^2 + z^2*G(z^12) - z^5*G(z^12) + z^8*G(z^12)^2 + z^5*G(z^24) + z^17*G(z^24)^2) / 2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)
Extensions
More terms from R. J. Mathar, Jul 10 2013
Comments