cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047837 Honaker's triangle problem: form a triangle with base of length n, all entries different, all row sums equal; a(n) gives minimal row sum.

Original entry on oeis.org

1, 3, 8, 15, 27, 43, 65, 94, 130, 175, 229, 294, 369, 456, 557, 671, 800, 944, 1105, 1283, 1479, 1695, 1930, 2187, 2465, 2765, 3090, 3439, 3813, 4213, 4641, 5096, 5580, 6095, 6639, 7216, 7825, 8466, 9143, 9855
Offset: 1

Views

Author

Keywords

Comments

Suggested by G. L. Honaker, Jr.
Agrees with A047873 at least for n < 365, conjectured to always agree.

Examples

			a(1)..a(4), 1 // 3; 1 2 // 8; 2 6; 1 3 4 // 15; 7 8; 4 5 6; 1 2 3 9.
a(6) = 43, 21 22; 8 16 19; 5 9 12 17; 3 4 7 14 15; 1 2 6 10 11 13.
a(7) = 65, 32 33; 20 21 24; 14 15 17 19; 9 10 11 12 23; 5 6 7 13 16 18; 1 2 3 4 8 22 25.
		

References

  • Pickover, C. A., The Zen of Magic Squares, Circles and Stars: An Exhibition Of Surprising Structures Across Dimensions, Princeton University Press, 2002 (pp. 289-292).

Crossrefs

Cf. A047866.

Formula

Appears to obey a 16-term linear recurrence. - Ralf Stephan, May 06 2004
Empirical g.f.: -x*(x^15 - 3*x^14 + 3*x^13 - 5*x^12 + 5*x^11 - 9*x^10 + 7*x^9 - 10*x^8 + 7*x^7 - 9*x^6 + 5*x^5 - 6*x^4 + 2*x^3 - 3*x^2 - 1) / ((x-1)^4*(x^2-x+1)*(x^2+1)*(x^2+x+1)^2*(x^4-x^2+1)). - Colin Barker, Jan 18 2013