A047916 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k! if k|n else 0 (1<=k<=n).
1, 2, 2, 6, 0, 6, 8, 8, 0, 24, 20, 0, 0, 0, 120, 12, 36, 48, 0, 0, 720, 42, 0, 0, 0, 0, 0, 5040, 32, 64, 0, 384, 0, 0, 0, 40320, 54, 0, 324, 0, 0, 0, 0, 0, 362880, 40, 200, 0, 0, 3840, 0, 0, 0, 0, 3628800, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800, 48, 144
Offset: 1
Examples
1; 2,2; 6,0,6; 8,8,0,24; 20,0,0,0,120; 12,36,48,0,0,720; ...
References
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
- N. J. A. Sloane, Notes on A002618, A002619, etc.
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
Crossrefs
Programs
-
Haskell
import Data.List (zipWith4) a047916 n k = a047916_tabl !! (n-1) !! (k-1) a047916_row n = a047916_tabl !! (n-1) a047916_tabl = zipWith4 (zipWith4 (\x u v w -> x * v ^ u * w)) a054523_tabl a002260_tabl a010766_tabl a166350_tabl -- Reinhard Zumkeller, Jan 20 2014
-
Mathematica
a[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, May 04 2012 *)
-
PARI
a(n,k)=if(n%k, 0, eulerphi(n/k)*(n/k)^k*k!) \\ Charles R Greathouse IV, Feb 09 2017
Comments