cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047917 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k!/n if k|n else 0 (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 2, 2, 0, 6, 4, 0, 0, 0, 24, 2, 6, 8, 0, 0, 120, 6, 0, 0, 0, 0, 0, 720, 4, 8, 0, 48, 0, 0, 0, 5040, 6, 0, 36, 0, 0, 0, 0, 0, 40320, 4, 20, 0, 0, 384, 0, 0, 0, 0, 362880, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 4, 12, 64, 324, 0, 3840, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			1; 1,1; 2,0,2; 2,2,0,6; 4,0,0,0,24; 2,6,8,0,0,120; ...
		

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

Divide n-th row of A047916 by n.
Row sums give A061417.
Cf. A002024.

Programs

  • Haskell
    a047917 n k = a047917_tabl !! (n-1) !! (k-1)
    a047917_row n = a047917_tabl !! (n-1)
    a047917_tabl = zipWith (zipWith div) a047916_tabl a002024_tabl
    -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    a[n_, k_] := If[ Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!/n, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-François Alcover, Feb 17 2012 *)

Extensions

Offset corrected by Reinhard Zumkeller, Mar 19 2014