A047919 Triangular array read by rows: a(n,k) = Sum_{d|k} mu(d)*U(n,k/d)/n if k|n else 0, where U(n,k) = A047916(n,k) (1<=k<=n).
1, 1, 0, 2, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 20, 2, 4, 6, 0, 0, 108, 6, 0, 0, 0, 0, 0, 714, 4, 4, 0, 40, 0, 0, 0, 4992, 6, 0, 30, 0, 0, 0, 0, 0, 40284, 4, 16, 0, 0, 380, 0, 0, 0, 0, 362480, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628790, 4, 8, 60, 312, 0, 3768, 0, 0, 0, 0
Offset: 1
References
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
- N. J. A. Sloane, Notes on A002618, A002619, etc.
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
Programs
-
Haskell
a047919 n k = a047919_tabl !! (n-1) !! (k-1) a047919_row n = a047919_tabl !! (n-1) a047919_tabl = zipWith (zipWith div) a047918_tabl a002024_tabl -- Reinhard Zumkeller, Mar 19 2014
-
Mathematica
U[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; a[n_, k_] := Sum[If[Divisible[n, k], MoebiusMu[d]*U[n, k/d], 0], {d, Divisors[k]}]; row[n_] := Table[a[n, k], {k, 1, n}]/n; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Nov 21 2012, after A047918 *)
Extensions
Offset corrected by Reinhard Zumkeller, Mar 19 2014