A047996 Triangle read by rows: T(n,k) is the (n,k)-th circular binomial coefficient, where 0 <= k <= n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 1, 6, 22
Offset: 0
Examples
Triangle starts: [ 0] 1, [ 1] 1, 1, [ 2] 1, 1, 1, [ 3] 1, 1, 1, 1, [ 4] 1, 1, 2, 1, 1, [ 5] 1, 1, 2, 2, 1, 1, [ 6] 1, 1, 3, 4, 3, 1, 1, [ 7] 1, 1, 3, 5, 5, 3, 1, 1, [ 8] 1, 1, 4, 7, 10, 7, 4, 1, 1, [ 9] 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, [10] 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, [11] 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, [12] 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, ...
References
- N. G. de Bruijn, Polya's theory of counting, in: Applied Combinatorial Mathematics (E. F. Beckenbach, ed.), John Wiley and Sons, New York, 1964, pp. 144-184 (implies g.f. for this triangle).
- Richard Stanley, Enumerative Combinatorics, 2nd. ed., Vol 1, Chapter I, Problem 105, pp. 122 and 168, discusses the number of subsets of Z/nZ that add to 0. - N. J. A. Sloane, May 06 2014
- J. Voß, Posting to Sequence Fans Mailing List, April 30, 2014.
- H. S. Wilf, personal communication to N. J. A. Sloane, Nov., 1990.
- See A000031 for many additional references and links.
Links
- Seiichi Manyama, Rows n=0..139 of triangle, flattened (Rows 0..50 from T. D. Noe)
- Ethan Akin and Morton Davis, Bulgarian solitaire, Am. Math. Monthly 92 (4) (1985), 237-250.
- J. Brandt, Cycles of partitions, Proc. Am. Math. Soc. 85 (3) (1982), 483-486, Theorem 5.
- Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
- A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233-238. MR1691428 (2000c:13006)
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173--188. MR1719140 (2000j:05009). See p. 174. - _N. J. A. Sloane_, Aug 06 2014
- M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
- Harold Fredricksen, An algorithm for generating necklaces of beads in two colors, Discrete Mathematics, Volume 61, Issues 2-3, September 1986, 181-188.
- D. E. Knuth, Computer science and its relation to mathematics, Amer. Math. Monthly, 81 (1974), 323-343.
- D. E. Knuth, H. Wilf, C. L. Mallows, and D. Klarner, Correspondence, 1994
- Petr Lisonek, Computer-assisted Studies in Algebraic Combinatorics, Thesis, University of Linz (Austria) Sep. 1994, pp. 72-73.
- D. I. Panyushev, Fredman's reciprocity, invariants of abelian groups, and the permanent of the Cayley table, J. Algebraic Combin. 33 (2011), 111-125.
- Mónica A. Reyes, Cristina Dalfó, Miguel Àngel Fiol, and Arnau Messegué, A general method to find the spectrum and eigenspaces of the k-token of a cycle, and 2-token through continuous fractions, arXiv:2403.20148 [math.CO], 2024. See p. 5.
- Frank Ruskey, Generate Necklaces, Lyndon words, and relatives, The Combinatorial Object Server.
- Frank Ruskey and Joe Sawada, An Efficient Algorithm for Generating Necklaces with Fixed Density, SIAM J. Computing, 29 (1999) 671-684.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- N. J. A. Sloane, A Note on Modular Partitions and Necklaces, 2014.
- Pantelimon Stănică and Subhamoy Maitra, Rotation symmetric boolean functions - count and cryptographic properties, Disc. Appl. Math. 156 (2008) 1567-1580, g_{n,w} Theorem 9.
- Wikipedia, Necklaces Animation [Broken link?]
- Wolfram Research, Necklaces Applet.
- Index entries for sequences related to necklaces
Crossrefs
Programs
-
Maple
A047996 := proc(n,k) local C,d; if k= 0 then return 1; end if; C := 0 ; for d in numtheory[divisors](igcd(n,k)) do C := C+numtheory[phi](d)*binomial(n/d,k/d) ; end do: C/n ; end proc: seq(seq(A047996(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Apr 14 2011
-
Mathematica
t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; t[0, 0] = 1; Flatten[Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jul 19 2011, after given formula *)
-
PARI
p(n) = if(n<=0, n==0, 1/n * sum(i=0,n-1, (x^(n/gcd(i,n))+1)^gcd(i,n) )); for (n=0,17, print(Vec(p(n)))); /* print triangle */ /* Joerg Arndt, Sep 28 2012 */
-
PARI
T(n,k) = if(n<=0, n==0, 1/n * sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d,k/d) ) ); /* print triangle: */ { for (n=0, 17, for (k=0, n, print1(T(n,k),", "); ); print(); ); } /* Joerg Arndt, Oct 21 2012 */
Formula
T(n, k) = (1/n) * Sum_{d | (n, k)} phi(d)*binomial(n/d, k/d).
G.f. for row n (n>=1): (1/n) * Sum_{i=0..n-1} ( x^(n/gcd(i,n)) + 1 )^gcd(i,n). - Joerg Arndt, Sep 28 2012
G.f.: Sum_{n, k >= 0} T(n, k)*x^n*y^k = 1 - Sum_{s>=1} (phi(s)/s)*log(1-x^s*(1+y^s)). - Petros Hadjicostas, Oct 26 2017
Product_{d >= 1} (1 - x^d - y^d) = Product_{i,j >= 0} (1 - x^i*y^j)^T(i+j, j), where not both i and j are zero. (It follows from Somos' infinite product for array A051168.) - Petros Hadjicostas, Jul 12 2019
Extensions
Name edited by Petros Hadjicostas, Nov 16 2017
Comments