cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048240 Number of new colors that can be mixed with n units of yellow, blue, red.

Original entry on oeis.org

1, 3, 3, 7, 9, 18, 15, 33, 30, 45, 42, 75, 54, 102, 81, 108, 108, 168, 117, 207, 156, 210, 195, 297, 204, 330, 270, 351, 306, 462, 300, 525, 408, 510, 456, 612, 450, 738, 567, 708, 600, 900, 594, 987, 750, 900, 825, 1173, 792, 1239, 930, 1200
Offset: 0

Views

Author

Jurjen N.E. Bos, N. J. A. Sloane, Robin Trew (trew(AT)hcs.harvard.edu)

Keywords

Crossrefs

A032125(n) = a(2^n).

Programs

  • Maple
    A048240 := proc(n) local ans, i, j, k; ans := 0; for i from n by -1 to 0 do for j from n by -1 to 0 do k := n - i - j; if 0 <= k and k <= n and gcd(gcd(i, j), k) = 1 then ans := ans + 1; fi; od; od; RETURN(ans); end;
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d]*(d+1)*(d+2)/2, {d, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 51}] (* Jean-François Alcover, Jun 14 2012, after Vladeta Jovovic *)

Formula

a(n) = number of triples (i, j, k) with i+j+k = n and gcd(i, j, k) = 1.
a(n) = Sum_{d|n} mu(n/d)*(d+1)*(d+2)/2. G.f.: Sum_{k>0} mu(k)/(1-x^k)^3. - Vladeta Jovovic, Dec 22 2002